Thursday, November 1, 2018

Geometry Problem 1396: Triangle with three rectangles on the sides, Vertices, Perpendicular lines, Concurrency

Geometry Problem. Post your solution in the comment box below.
Level: Mathematics Education, High School, Honors Geometry, College.

Details: Click on the figure below.

Geometry Problem 1396: Triangle with three rectangles on the sides, Vertices, Perpendicular lines, Concurrency, Tutoring.

1 comment:

  1. Fie R = PB intersectat cu NA .
    Unghiul AEN = BAR ( unghiuri cu laturile perpendiculare).
    Unghiul AJN = CAR ( unghiuri cu laturile perpendiculare).
    Notam cu a, b, c unghiurile AEN ,BGP si CHQ .
    Atunci unghiurile AJN = CAR= A - a.
    Analog unghiurile PGB = CBR = b si PDB = ABR = B-b.
    Daca S = NA intersectat cu QC rezulta ca unghiul ACX = CHQ =c
    si unghiul BCX = CFQ = C – c.
    In triunghiul EAJ , sin( a )= AN/AE si sin J= sin (A –a ) = AN/AJ.
    De aici sin( a) / sin (A –a )= AJ/AE. (1)
    In mod analog obtinem sin( b)/sin(B-b) = BD/BG , (2)
    si sin ( c )/ sin (C- c) = CF/CH , (3).
    Daca inmultim relatiile (1) , (2) si (3) si cum AEDB, BGFC, ACHJ dreptunghiuri rezulta
    s sin( a) / sin (A –a )* sin( b)/sin(B-b)* sin ( c )/ sin (C- c)=1
    de unde conform teorema lui Ceva trigonometric rezulta AN, PB,QC concurente.
    Florin Popa Comanesti, Romania.

    ReplyDelete

Share your solution or comment below! Your input is valuable and may be shared with the community.