Geometry Problem
Level: Mathematics Education, High School, Honors Geometry, College.
Click the figure below to see the complete problem 838.
Friday, December 28, 2012
Problem 838: Parallelogram, Perpendicular, Diagonal, Metric Relations
Labels:
diagonal,
metric relations,
parallelogram,
perpendicular,
triangle
Subscribe to:
Post Comments (Atom)
cosBAD = cosEBA = 3/4
ReplyDeleteBy cosine law,
x^2 = 4^2 + 5^2 - 2(4)(5)cosBAD
x = sqrt11
sqrt(11)
ReplyDeleteUsing Pythagoras Theorem,
ReplyDeleteAE^2 = 4^2 − 3^2 = 7
AC^2 = 8^2 + 7 = 71
By Parallelogram Law,
2×(4^2 + 5^2) = x^2 + 71
x^2 = 11
x = √11
Notam cu P punctul in care paralela la BD prin E intalneste pe AD.Vom obtine
ReplyDeleteEP=BD=X;EB=DP=5-3=2.Aplicam teorema lui Pitagora
AE^2 = 4^2 − 3^2 = 7
X=EP^2=AE^2+AP^2=7+2^2=11 =>x = √11
Problem 838
ReplyDeleteDraw BF perpendicular in AD,then AF=3 and FD=5-3=2.Is BD^2=BF^2+FD^2=(4^2-3^2)+2^2=16-9+4=11.So x=√11.
APOSTOLIS MANOLOUDIS 4 HIGH SHCOOL OF KORYDALLOS PIRAEUS GREECE