Wednesday, December 26, 2012

Problem 837: Triangle, Orthocenter, Circumcenter, Circle, Concyclic Points

Geometry Problem
Level: Mathematics Education, High School, Honors Geometry, College.

Click the figure below to see the complete problem 837.

Online Geometry Problem 837: Triangle, Orthocenter, Circumcenter, Circle, Concyclic Points

10 comments:

  1. Since ∠ABO=90°−∠A, OB=OF, so ∠OFB=90°−∠A.
    Since ∠FOG=2∠B, OF=OG, so ∠OFG=90°−∠B.
    Therefore, ∠BFG=∠OFB+∠OFG=∠C.
    Hence, A,F,G,C concyclic.

    Since ∠BAD=90°−∠B, AB=AG, so ∠BAG=180°−2∠B.
    So ∠AGC=∠BAG+∠B=180°−∠B.
    Since O is the orthocenter of ΔABC, so ∠AOC=180°−∠B.
    Therefore, ∠AGC=∠AOC.
    Hence, A,O,G,C concyclic.

    As a result, A,F,O,G,C concyclic.

    ReplyDelete
  2. solution by Michael Tsourakakis
    q:tangent to the circle center Ο, at the point Β
    q//AC ,so, angleIBC=α=angleC=β
    angle α=angleγ(by chord and tangent).So β=γ, therefore, quadrilateral FGCA is,cyclic quadrilateral.
    because O ,it is the center of the circumcircle of the triangle FGB, then ,angle δ=angle ε.
    But, angle ζ=angleδ (because AHDB ,is, cyclic quadrilateral.), therefore, angle ζ= angle ε
    So,OCGA , is, cyclic quadrilateral .
    But, the circumcircle of the triangle AGC is unique. So A,F O G,C concyclic
    see the image;http://img203.imageshack.us/img203/5730/26ggb.png

    ReplyDelete
  3. ∠OGF = ∠OFG = (180 - ∠FOG)/2 = (180 - 2∠FBG)/2 = (180 - 2∠ABD)/2 = 90 - ∠ABD = ∠BAD = ∠FAO.
    Hence ,O,F,G,A concyclic. Similarly, O,G,C,F concyclic.
    Q.E.D.

    ReplyDelete
  4. http://img209.imageshack.us/img209/5224/problem837.png
    Add lines per attached sketch
    Let B=value of angle ABC
    We have ∠FOG=2. ∠B
    In right triangle CEB we have ∠BCE=90-∠B
    In isosceles triangle FOG we have ∠OFG=90- ½. ∠FOG=90-∠B
    So ∠BCE=∠OFG => F,O,G, C is cocyclic
    Similarly we also have A,F,O, G cocyclic
    So A,F,O,G,C is cocyclic

    ReplyDelete
  5. COE is perpendicular bisector of BF
    => ΔOBE is congruent to ΔOFE
    => angle BCE = angle FCE
    => angle OCG = angle OCF
    => O,G,C,F concyclic
    ///ly so are O,F,A,C

    ReplyDelete
    Replies
    1. Sorry, I don't get why ∠OCG=∠OCF would imply O,G,C,F concyclic.
      Can you explain a bit more?

      Delete
    2. Prob 837 - Proof Corrected. Thank you Jacob!

      COE is perpendicular bisector of BF
      => ΔOBE is congruent to ΔOFE
      => ∠BCE = ∠FCE
      => ∠OCG = ∠OCF. Also ∠OCG = ∠OAF (each = 90°-B)
      => ∠OAF = ∠OCF
      => O,C,A,F concyclic
      ///ly so are O,G,C,A

      Delete
  6. Si me lo permites, Alejandro, voy a re-enunciar tu problema y lo demostraré con la menor cantidad de cálculos posibles:

    Dado tr ABC de ortocentro O, sea K el circuncírculo de tr ACO.
    K corta a AB en F y a CB en G.
    Demostrar que O es circuncentro de tr FGB.

    Esta forma de enunciarlo te hace pensar directamente en "ortocentro--->circuncentro--->isogonalidad!" pues bien, usemos esa idea.

    1- AFOGC es cíclico por tanto <OFG = <OCG = <BAD.
    2- Trazamos la F-altura de tr FGB digamos FX y vemos que FX // AD, por tanto <BFX = <BAD.
    De (1) y (2) tenemos <OFG = <OFX, por tanto FX y FO son isogonales conjugados.

    Por simetría puedes demostrar que BO y GO son isogonales conjugados a las respectivas alturas, luego O es circuncentro de tr BFG.

    ReplyDelete
  7. http://www.youtube.com/watch?v=Jp0RmY0Hhx8

    ReplyDelete
  8. < FOB = 2B and so < OGF = 90-B
    But < BAP = 90-B so AFOG is concyclic

    Similarly CFOG is also concyclic

    Hence AFOGC is concyclic

    Sumith Peiris
    Moratuwa
    Sri Lanka

    ReplyDelete

Share your solution or comment below! Your input is valuable and may be shared with the community.