Online Geometry theorems, problems, solutions, and related topics.
Geometry ProblemClick the figure below to see the complete problem 609.
Let(XYZ) denote the area of triagle XYZ.AG/GC=(ADG)/(GDC)=(AD.GD.sin ADG)/(GD.CD.sin GDC)=(AD/CD)(sin ADG /sin GDC)CF/FB =(CDF)/(FDB)=(CD.FD.sin CDF)/(FD.BD.sin FDB)=(CD/BD)(sin CDF / sin FDB)BE/EA=(BDE)/(EDA)=(BD.ED.sin BDE)/(ED.AD.sin EDA)=(BD/AD)(sin BDE / sin EDA)From perpendicularity conditions,sin ADG = sin FDB, sin GDC = sin BDE, andsin CDF = sin EDAFollows(AG/GC)(CF/FB)(BE/EA)= 1 numercallyApplying Converse of Menelau's Theorem,E,F,G are collinear
Let(XYZ) denote the area of triagle XYZ.
ReplyDeleteAG/GC
=(ADG)/(GDC)=(AD.GD.sin ADG)/(GD.CD.sin GDC)
=(AD/CD)(sin ADG /sin GDC)
CF/FB
=(CDF)/(FDB)=(CD.FD.sin CDF)/(FD.BD.sin FDB)
=(CD/BD)(sin CDF / sin FDB)
BE/EA
=(BDE)/(EDA)=(BD.ED.sin BDE)/(ED.AD.sin EDA)
=(BD/AD)(sin BDE / sin EDA)
From perpendicularity conditions,
sin ADG = sin FDB, sin GDC = sin BDE, and
sin CDF = sin EDA
Follows
(AG/GC)(CF/FB)(BE/EA)= 1 numercally
Applying Converse of Menelau's Theorem,
E,F,G are collinear