Share your solution in the comments below and help others learn from your approach!
Geometry ProblemClick the figure below to see the complete problem 609.
Let(XYZ) denote the area of triagle XYZ.AG/GC=(ADG)/(GDC)=(AD.GD.sin ADG)/(GD.CD.sin GDC)=(AD/CD)(sin ADG /sin GDC)CF/FB =(CDF)/(FDB)=(CD.FD.sin CDF)/(FD.BD.sin FDB)=(CD/BD)(sin CDF / sin FDB)BE/EA=(BDE)/(EDA)=(BD.ED.sin BDE)/(ED.AD.sin EDA)=(BD/AD)(sin BDE / sin EDA)From perpendicularity conditions,sin ADG = sin FDB, sin GDC = sin BDE, andsin CDF = sin EDAFollows(AG/GC)(CF/FB)(BE/EA)= 1 numercallyApplying Converse of Menelau's Theorem,E,F,G are collinear
Share your solution or comment below! Your input is valuable and may be shared with the community.
Let(XYZ) denote the area of triagle XYZ.
ReplyDeleteAG/GC
=(ADG)/(GDC)=(AD.GD.sin ADG)/(GD.CD.sin GDC)
=(AD/CD)(sin ADG /sin GDC)
CF/FB
=(CDF)/(FDB)=(CD.FD.sin CDF)/(FD.BD.sin FDB)
=(CD/BD)(sin CDF / sin FDB)
BE/EA
=(BDE)/(EDA)=(BD.ED.sin BDE)/(ED.AD.sin EDA)
=(BD/AD)(sin BDE / sin EDA)
From perpendicularity conditions,
sin ADG = sin FDB, sin GDC = sin BDE, and
sin CDF = sin EDA
Follows
(AG/GC)(CF/FB)(BE/EA)= 1 numercally
Applying Converse of Menelau's Theorem,
E,F,G are collinear