Thursday, December 2, 2010

Problem 545: Acute Triangle, Squares, Altitudes, Area

Geometry Problem
Click the figure below to see the complete problem 545 about Acute Triangle, Squares, Altitudes, Area.

Problem 545: Acute Triangle, Squares, Altitudes, Area.
Go to Complete Problem 545

3 comments:

  1. AB² - AB∙BF = AC∙AE see P 521
    AC² - AC∙AE = BC∙DC
    BC² - BC∙DC = AB∙BF
    =>
    AB² + AC² + BC² = 2∙( AB∙BF + AC∙AE + BC∙DC )

    ReplyDelete
  2. Apply cosine formula in triangle ABC we have:
    2.b.c.Cos(A)=b^2+c^2-a^2
    2.a.c.Cos(B)=a^2+c^2-b^2
    2.a.b.Cos(C)=a^2+b^2-c^2

    add both side we get 2(b.c.Cos(A)+a.c.Cos(B)+a.b.Cos(C))=a^2+b^2+c^2
    This will get to the result

    Peter Tran

    ReplyDelete
  3. B, C, E, F are concyclic; AEC, AFB are secants
    So AB.AF = AC.AE. Similarly
    BC.BD = BA.BF
    CA.CE = CB.CD

    2(AB.AF + BC.BD + AC.CE)
    =(AB.AF + BC.BD + AC.CE)+(AB.AF + BC.BD + AC.CE)
    =(AC.AE + BA.BF + CB.CD)+(AB.AF + BC.BD + AC.CE)
    =(AC.AE + AC.CE)+(BF.BA+AB.AF)+(CD.CB+BC.BD)
    =AC(AE+CE)+ AB(AF+BF)+BC(BD+CD)
    =AC.AC + AB.AB + BC.BC
    =a^2 + b^2 + c^2
    =Sa + Sb + Sc

    ReplyDelete