Geometry Problem
Click the figure below to see the complete problem 545 about Acute Triangle, Squares, Altitudes, Area.
Go to Complete Problem 545
Thursday, December 2, 2010
Subscribe to:
Post Comments (Atom)
Online Geometry theorems, problems, solutions, and related topics.
Geometry Problem
Click the figure below to see the complete problem 545 about Acute Triangle, Squares, Altitudes, Area.
Go to Complete Problem 545
AB² - AB∙BF = AC∙AE see P 521
ReplyDeleteAC² - AC∙AE = BC∙DC
BC² - BC∙DC = AB∙BF
=>
AB² + AC² + BC² = 2∙( AB∙BF + AC∙AE + BC∙DC )
Apply cosine formula in triangle ABC we have:
ReplyDelete2.b.c.Cos(A)=b^2+c^2-a^2
2.a.c.Cos(B)=a^2+c^2-b^2
2.a.b.Cos(C)=a^2+b^2-c^2
add both side we get 2(b.c.Cos(A)+a.c.Cos(B)+a.b.Cos(C))=a^2+b^2+c^2
This will get to the result
Peter Tran
B, C, E, F are concyclic; AEC, AFB are secants
ReplyDeleteSo AB.AF = AC.AE. Similarly
BC.BD = BA.BF
CA.CE = CB.CD
2(AB.AF + BC.BD + AC.CE)
=(AB.AF + BC.BD + AC.CE)+(AB.AF + BC.BD + AC.CE)
=(AC.AE + BA.BF + CB.CD)+(AB.AF + BC.BD + AC.CE)
=(AC.AE + AC.CE)+(BF.BA+AB.AF)+(CD.CB+BC.BD)
=AC(AE+CE)+ AB(AF+BF)+BC(BD+CD)
=AC.AC + AB.AB + BC.BC
=a^2 + b^2 + c^2
=Sa + Sb + Sc