Proposed Problem
See complete Problem 268 at:
gogeometry.com/problem/p268_right_triangle_catheti_altitude_hypotenuse_square.htm
Level: High School, SAT Prep, College geometry
Thursday, March 12, 2009
Problem 268: Right Triangle, Catheti and Altitude
Labels:
altitude,
cathetus,
hypotenuse,
right triangle
Subscribe to:
Post Comments (Atom)
We know that a^2 = BH*BA, b^2 = AH*BA and h^2=AH*BH. So 1/a^2 + /b^2 = 1/BH*BA + 1/AH*BA = 1/BA*[1/BH+1/AH] = 1/c * [AH+BH=c)/AH*BH = 1/(AH-BH) = 1/h^2. Hence, 1/a^2 + /b^2 = 1/h^2
ReplyDeleteAjit: ajitathle@gmail.com
By JCA
ReplyDelete1/a^2+1/b^2=(a^2+b^2)/(a^2*b^2)=c^2/(a^2*b^2)
=1/h^2*(c^2*h^2)/(a^2*b^2)
=1/h^2*(4[ABC]^2)/(4*[ABC]^2]=1/h^2
https://www.youtube.com/watch?v=Pxuw-ro45ZA
ReplyDeleteSee the drawing
ReplyDeleteDefine c=AB
S=[ABC]=a.b/2=c.h/2 => a.b=c.h
c=a.b/h => c^2=a^2.b^2/h^2
Pythagoras => a^2+b^2=c^2
=> a^2+b^2=a^2.b^2/h^2
dividing by a^2.b^2 => 1/b^2 + 1/a^2 = 1/h^2