Proposed Problem
See complete Problem 267 at:
gogeometry.com/problem/p267_right_triangle_catheti_product.htm
Level: High School, SAT Prep, College geometry
Thursday, March 12, 2009
Problem 267: Right Triangle, Product of Catheti
Labels:
altitude,
cathetus,
hypotenuse,
right triangle,
similarity
Subscribe to:
Post Comments (Atom)
Area of Tr. ABC = (1/2)*c*h
ReplyDeleteSince BC is perpendicular to AC,area of Tr. ABC is also=(1/2)*b*c. Thus (1/2)*c*h = =(1/2)*b*c
or a*b = c*h
Ajit: ajitathle@gmail.com
like P 266
ReplyDeleteTypo Correction
ReplyDeleteThe second line in my proof above should've read:
Since BC is perpendicular to AC, area of Tr. ABC is also=(1/2)*a*b. Thus (1/2)*c*h = =(1/2)*a*b
Ajit
Triangles ABC and ACH are similar therefore :
ReplyDeletea/c=h/b
ab=ch
https://www.youtube.com/watch?v=PlUisGWx3nM
ReplyDeleteSimply by area
ReplyDelete