Geometry Problem 1493. Post your solution in the comment box below.
Level: Mathematics Education, K-12 School, Honors Geometry, College.
Details: Click on the figure below.
Saturday, May 1, 2021
Geometry Problem 1493: Four Squares, Parallelogram, Auxiliary Lines
Subscribe to:
Post Comments (Atom)
https://photos.app.goo.gl/6SQsFetQuy1gT2zc6
ReplyDeleteLet AD=AB=u and DG=GJ=v
Draw points P and Q per attached sketch
Right triangle AGF congruence to LPA ( case HA)
So PA=FG= v and PL=AG=u+v
Triangle AJB congruence to QFL ( case SAS)
So LF=BJ and ^(QFL)=^(AJB)
So BLFJ is a parallelogram
Solution using Pythagoras and Trigonometry
ReplyDeleteLet AD = a, DG = GJ = b, AF = c, BJ = x, FL = y
Now c^2 = a^2 + 2ab + 2b^2 ....(1) ( Rt.Tr. AFG)
x^2 = 2a^2 + 4ab + 4b^2........(2) ( Rt.Tr. ABJ)
So x = sqrt2.c = y ............(3) (Rt. Isosceles Tr. LKF)
Let < FAJ = p & < FJA = q
Now tan(<LFE) = tan(45-p) = (1 - tan.p)/(1 + tan.p) = (1 - b/(a+b))/(1 + b/(a+b))
So tan(<LFE) = a/(a+2b) = tan.q which yields < LFE = q .....(4)
From (3) & (4), LF and BJ are both equal and parallel
Hence BLFJ is a parallelogram
Sumith Peiris
Moratuwa
Sri Lanka
Pure Geometry Solution
ReplyDeleteLet FAJ = p as before. So < LAB = p
Tr.s LAB & FAD are congruent SAS
Hence < ADF = 135 = < ABL, so L,B,D are collinear
So LB // FJ and also LB = FD = FJ
Hence BLFJ is a parallelogram
Sumith Peiris
Moratuwa
Sri Lanka
My solution, if found interesting, can be found at https://stanfulger.blogspot.com/2021/06/problem-1493-gogeometry-my-solution.html
ReplyDeleteLet AL=AF=a,AB=AD=b,DG=GF=GJ=c
ReplyDeleteBJ^2=b^2+(b+2c)^2=2b^2+4bc+4c^2 while
LF^2=2a^2=2[b+c)^2+c^2]=2b^2+4bc+4c^2
Follows BJ^2=LF^2, BJ=LF
Next AL=AF,AB=DF and <LAB=<FAD imply triangles LAB and FAD Identical
and LB=FD=FJ as required.
Can we expect further problems soon, or has this coloumn ended?
ReplyDeleteSoon
DeleteEn la R rotación de centro A y ángulo de 90 grados en sentido antihorario
ReplyDeleteR(D)=B y R(F)=L.
Lo anterior implica que BL=DF.
Como los cuadrados EFGD y FHJG son iguales, DF=FJ.
En consecuencia BL=FJ.
Por la rotación mencionada al inicio los ángulos ADF y ABL son iguales, y es claro que ADF mide 135 grados (90+45), esto implica que L, B y D están alineados, y esto implica que LB||FJ.
Luego el cuadrilátero BLFJ tiene dos lados opuestos paralelos e iguales, por lo que es un paralelogramo.
Join D,F and B,D. Triangles ABL and ADF are congruent. So, BL=DF. Again, Triangle DJF is isoscales. So DF=FJ. So, BL=FJ. Angle ABL=Angle ADF=135 degree. Therefore, Angle ABL+ Angle ABD=135+45=180 degree. So, L, B and D are collinear. Therefore Angle ADL=Angle GJF=45 which means BL is parallel to FJ. Therefore BLFJ is a parallellogram.
ReplyDelete