Interactive step-by-step animation using GeoGebra. Post your solution in the comment box below.
Level: Mathematics Education, High School, Honors Geometry, College.
Details: Click on the figure below.
Thursday, April 23, 2020
Geometry Problem 1472: Cyclic Quadrilateral, Perpendicular Diagonals, Rectangle
Labels:
concyclic,
cyclic quadrilateral,
diagonal,
GeoGebra,
ipad,
ipadpro,
perpendicular,
rectangle
Subscribe to:
Post Comments (Atom)
∆APE1, ∆PBE1 isosceles => E1 midpoint, ∆PCE2, ∆PBE2 isosceles => E2 midpoint
ReplyDelete=> E1E2 midlle line of ∆ABC , at the same three rest sides
https://photos.app.goo.gl/9X2XxujZ82wfkgDy9
https://photos.app.goo.gl/UCbnTTv6vi2aEGSK6
ReplyDelete< E1BP = < PCD = < DPH3 = < BPE1 so BE1 = PE1 and so E1 is the midpoint of AB
ReplyDeleteSimilarly E2, E3 and E4
Hence E1E2 // AC // E3E4 & similarly E1E4//BD//E2E3
Therefore E1E2E3E4 is a parallelogram & since AC//BD, it follows that E1E2E3E4 is a rectangle
Sumith Peiris
Moratuwa
Sri Lanka
AC perpendicular to BD and not AC//BD in the last line of my proof above
Delete