Geometry Problem. Post your solution in the comment box below.
Level: Mathematics Education, High School, Honors Geometry, College.
Details: Click on the figure below.
Sunday, November 11, 2018
Geometry Problem 1399: Triangle, Circumcircle, Perpendiculars, Angles, Congruence, Cyclic Quadrilateral
Subscribe to:
Post Comments (Atom)
Since CEFG is concyclic,
ReplyDelete< ECF = < EGF = x say
Now since AGEC is concyclic,
< EGH = < EAH = < DCB
But < EGH = alpha + x and
< DCB = alpha’ + x and so
alpha = alpha’
Sumith Peiris
Moratuwa
Sri Lanka
Solution 2
ReplyDeleteSince AGEH & ABDC are both concyclic
< HEG = < BDC
So in Tr.s BDC & HEG,
< HEG = < BDC
< EHG = < DBC since each angle = < CAD
Hence < EGH = < DCB
But < EGF = < ECF
So alpha = alpha’
Sumith Peiris
Moratuwa
Sri Lanka
Ang BAD = HGF + FGE ( AHEG )
ReplyDeleteAng BAD = BCE + ECD ( BD )
Ang FGE = FCE ( FECG )
=> HGF = ECD
Unghiul FEG = unghiul FCG (laturi perpendiculare).
ReplyDeleteDe aici FECG circumscriptibil
=> unghiul FGE = FCE (1).
Unghiul AHE = unghiul AGE =90
=> AHEG circumscriptibil
Unghiul HAE = unghiul HGE . (2)
Dar unghiul BAD = unghiul BCD (3)
Din (2) si (3) => unghi BCD= unghi HGE.(4)
Din (1) si (4) => α= α^,
Florin Popa, Comanesti, Romania
Is EFGC=cyclic=>α=<DCE=<FGH=α'.
ReplyDelete