Geometry Problem. Post your solution in the comments box below.
Level: Mathematics Education, High School, Honors Geometry, College.
Click the figure below to view the complete problem 1050.
Monday, October 13, 2014
Geometry Problem 1050: Regular Hexagon, Center, Any Point, Inside, Outside, Distance, Congruence, Metric Relations
Labels:
center,
congruence,
distance,
hexagon,
metric relations,
regular polygon
Subscribe to:
Post Comments (Atom)
Let each side of the hexagon be a.
ReplyDeleteLet M,N be the midpoints of AF,CD resp.
Required sum
= (2PM^2 + a^2 / 2) + (2PO^2 + 2OE^2) + (2PN^2 + a^2 / 2)
= 2(PM^2 + PN^2) + a^2 + 2(PO^2 + OE^2)
= 2( 2PO^2 + 1/2 MN^2) + a^2 + 2PO^2 + 2a^2
= 6PO^2 + MN^2 + 3a^2
= 6PO^2 + 3a^2 + 3a^2
= 6PO^2 + 6a^2
Let ∠POC=x, ∠POD=y. Let AB=OA=R, PO=d.
ReplyDeleteUsing cosine law, we have
PA² = R² + d² − 2Rd cos(x+120°)
PB² = R² + d² − 2Rd cos(x+60°)
PC² = R² + d² − 2Rd cos(x)
PD² = R² + d² − 2Rd cos(y)
PE² = R² + d² − 2Rd cos(y+60°)
PF² = R² + d² − 2Rd cos(y+120°)
Note that
cos(x)+cos(x+60°)+cos(x+120°)
= 2 cos(x+60°) cos(60°) + cos(x+60°)
= 2 cos(x+60°)
cos(y)+cos(y+60°)+cos(y+120°)
= 2 cos(y+60°)
= 2 cos(180°−(x+60°))
= −2 cos(x+60°)
Thus,
cos(x)+cos(x+60°)+cos(x+120°) + cos(y)+cos(y+60°)+cos(y+120°) = 0
Hence,
PA²+PB²+PC²+PD²+PE²+PF² = 6R²+6d² = 6 AB²+6 PO²
Problem 1050
ReplyDeleteIs AB=BC=CD=DE=EF=FA=AO=BO=CO=DO=EO=FO.But PA^2+PB^2+PC^2+PD^2+PE^2+PF^2=(PA^2+PD^2)+(PB^2+PE^2)+(PC^2+PF^2)=
(2PO^2+2AO^2)+(2PO^2+2BO^2)+(2PO^2+2CO^2)=6PO^2+6AB^2.
APOSTOLIS MANOLOUDIS 4 HIGH SCHOOL KORYDALLOS PIRAEUS GREECE
Considering the geometrical structure in a 3-D plane.
ReplyDeleteJoin OF,OE and consider the triangles OEF & OEP
OEP is right angle triangle
=> PE^2 = PO^2 + OE^2 ---- (1)
In the triangle OEF, OE = OF and Angle EFO = 60 => OEF is equilateral triangle
Hence OE=OF=FE ------- (2)
Substituting (2) in (1) => PE^2 = PO^2 + FE^2
Considering symmetry, PE=PF=PA=PB=PC=PD & EF=FA=AB=BC=CD=DE
The result thus follows
Note that AD, BE and CF are concurent at O
ReplyDeleteUse Apollonius Theorem in each of the triangles PAD, PBE, PCF and add. The result follows easily
Sumith Peiris
Moratuwa
Sri Lanka