Friday, June 13, 2014

Geometry Problem 1022: Circular Sector of 90 Degrees, Squares, Metric Relations

Geometry Problem. Post your solution in the comments box below.
Level: Mathematics Education, High School, Honors Geometry, College.

Click the figure below to see the complete problem 1022.

Online Math: Geometry Problem 1022: Circular Sector of 90 Degrees, Squares, Metric Relations

4 comments:

  1. Let OA=R. Let S(ABC) be the area of ABC.

    OD² + OG²
    = (AC² + R² − 2×AC×R cos∠OCD) + (BC² + R² − 2×BC×R cos∠OCG)
    = (AC² + R² + 2×AC×R sin∠OCA) + (BC² + R² + 2×BC×R sin∠OCB)
    = AC² + BC² + 2R² + 2R (AC sin∠OCA + BC sin∠OCB)
    = AC² + BC² + 2R² + 4 [S(OAC) + S(OBC)]
    = AC² + BC² + 2R² + 4 [S(OAB) + S(ABC)]
    = AC² + BC² + 2R² + 2R² + 4×S(ABC)
    = AC² + BC² + 4R² + 2×AC×BC sin∠ACB
    = AC² + BC² + 4R² + 2×AC×BC sin135°
    = AC² + BC² + 4R² − 2×AC×BC cos135°
    = AC² + BC² + 4R² − 2×AC×BC cos∠ACB
    = AB² + 4R²
    = 3 AB²

    ReplyDelete
  2. We use complex numbers.
    Let C = cos a + isin a be a point on the unit circle. Then A = 0 + 1i and B = 1 + 0i.
    Then AB² = 2, so we have to prove that OD² + OG² = 6.

    D = C -i(A - C) = cos a - sin a + 1 + i(coa s + sin a).
    G = C + i(B - C) = cos a - sin a + i(sin a - cos a + 1).

    OD² + OG² = (cos a - sin a + 1)² + (cos a + sin a)² + (cos a - sin a)² + (sin a - cos a + 1)²
    = 4(cos²a + sin²a) + 2
    = 6

    ReplyDelete
  3. Let AC = a, BC =b and OA = R
    Let p be the height of the altitude from O to AC, q from O to BC

    OD2 + OG2
    = {(p+a)2 + a2/4 } + {q+b)2 +b2/4}
    = {R2 + 2ap + a2} + (R2 + 2bq + b2}
    = 2R2 + a2 + b2 + 2(ap + bq)
    = 2R2 + (2R2 – sqrt2.ab) +2{2S(OAC) + 2(OBC)}
    = 4R2 – sqrt2.ab + 4{R2/2 + S(ABC)}
    = 6R2 – sqrt2.ab + 4 X (1/2)/(sqrt2).ab
    = 6R2
    = 3AB2

    Sumith Peiris
    Moratuwa
    Sri Lanka

    ReplyDelete