Saturday, September 29, 2012

Problem 807: Right Triangle Area, Incircle, Tangency Points, Semicircle Area

Geometry Problem
Level: Mathematics Education, High School, Honors Geometry, College.

Click the figure below to see the complete problem 807.

Online Geometry Problem 807: Right Triangle Area, Incircle, Tangency Points, Semicircle Area

3 comments:

  1. Let AB = a, BC = b and AC = c.

    Then
    S = 1/2 ab
    AD = 1/2 (a+c-b)
    CE = 1/2 (b+c-a)

    S1 = 1/32 π (a+c-b)^2
    S2 = 1/32 π (b+c-a)^2

    S1*S2
    = 1/1024 π^2 [(a+c-b)(b+c-a)]^2
    = 1/1024 π^2 [c^2 - (a-b)^2]^2
    = 1/1024 π^2 [2ab]^2
    = 1/256 π^2 (ab)^2

    √[S1*S2]
    = 1/16 π ab
    = π/8 S

    S = 8/π √[S1*S2]

    ReplyDelete
  2. ΑD=AF=x ,FC=CE=y,BE=BD=z .if a+b+c=2t We know that x=t-a,y=t-c,z=t-b
    S1=π(t-a)^2/8 so √[8S1/π]=t-a similarly √[8S2/π]=t-c so (8/π)√(S1S2)=(t-a)t-c)
    S=√t(t-a)(t-c)(t-b) but easily seen (t-a)t-c)=√t(t-a)(t-c)(t-b)because a^2+c^2=b^2
    solution by Michael Tsourakakis from Greece

    ReplyDelete
  3. http://alnasiry.net/forums/uploaded/9_01349036799.png
    let |EC|=x ,|EI|=r=|BD|,|AD|=√y
    s=A(CEIF)+A(BEID)+A(ADIF)
    s=x.r +r^2+y.r
    but s=1/2 (x+r)(y+r)
    =1/2 (xy+xr+yr+r^2 )=1/2 (xy+s)
    s=xy
    s_2=1/2 (x^2/4)π x=√((8s_2)/π)
    s_1=1/2 (y^2/4)π y=√((8s_1)/π)
    s=xy=8/π √(s_1.s_2 )

    ReplyDelete