Thursday, June 9, 2011

Problem 618: Triangle Area, 60 Degrees, Incircle, Incenter, Tangent

Geometry Problem
Level: Mathematics Education, High School, Honors Geometry, College.

Click the figure below to see the complete problem 618.

 Problem 618: Triangle Area, 60 Degrees, Incircle, Incenter, Tangent

4 comments:

  1. ∆=(1/2)bc sin 60° = (√3/4)bc
    (1/2)=cos 60°=(b² + c² -a²)/2bc= (b² + c²-49)/2bc
    b²+c²=bc+49
    s-b=2, s-c=5 and so b-c=3
    2bc=(b²+c²)-(b-c)²=bc+49-9=bc+40
    bc=40
    ∴∆=(√3/4)bc=10√3 sq units

    ReplyDelete
  2. S=(1/2)bc.sinA=bc.sin(A/2).cos(A/2)
    sin²(A/2)=(s-b).(s-c)/bc
    bc=(s-b).(s-c)/sin²(A/2)
    S=(s-b).(s-c).cotan(A/2)
    S=2*5*sqr(3)

    ReplyDelete
  3. Pure Geometry solution

    Let h be the length of the altitude from B and let AE = AF = p

    So h = (p+2)√3/2

    And h^2 + (p/2 + 4)^2 = 49 from which p = 3 and h = 5√3/2

    So the Area(ABC) = ½ h(p+5) = 10√3


    Sumith Peiris
    Moratuwa
    Sri Lanka

    ReplyDelete
  4. Join EF, AEF is an equilaterial triangle
    Let AE=AE=EF=x & radius of circle=r
    <EOF=120
    By cosine law, x^2=r^2+r^2-2r^2cos120
    x=r*sqrt3
    r=x/sqrt3

    [ABC]=[(AB)(BC)sin60]/2=[(2+x)(5+x)*sqrt3]/4
    Also, [ABC]=r*(2+x+5+x+7)/2=r(7+x)---------(*)
    r(7+x)=[(2+x)(5+x)*sqrt3]/4----------(2)
    Sub (1) in (2)
    4x(7+x)=[(x+2)(x+5)*3]
    4x^2+28x=3x^2+21x+30
    x^2+7x-30=0
    (x+10)(x-3)=0
    x=3 or -10 (rej)
    r=sqrt3
    By (*), [ABC]=r(7+x)=10sqrt3

    ReplyDelete