Geometry Problem
Click the figure below to see the complete problem 509 about Triangle, 120 Degrees, Angles, Congruence.
See also:
Complete Problem 509
Level: High School, SAT Prep, College geometry
Online Geometry theorems, problems, solutions, and related topics.
Geometry Problem
Click the figure below to see the complete problem 509 about Triangle, 120 Degrees, Angles, Congruence.
x=10
ReplyDeleteEn espaƱol: Sea P punto tal que el PBAD sea paralelogramo, y sea Q un punto tal que BQC sea equilatero y no se superponga a la figura inicial. Notemos las siguientes relaciones angulares DBC=x,BAD=DPB=PBQ=60-2x, BDP=120-x, luego como BP=AD=BC=QB, se tiene que el BQP es isosceles en B lo que implica que BPQ=60+x, DPQ=120-x=180-QAD, luego el cuadrilatero BDPQ es ciclico, entonces DQB=60-2x, DQC=2x, pero entonces DQA=DAQ, DQ=AD=QC, luego el triangulo QDC es isosceles en Q, pero QDC=60+2x y DQC=2x, luego 2(60+2x)+2x=180 y por lo tanto x=10.
ReplyDeleteThe solution is indeed x=10. Can someone provide the diagram of the above solution?
ReplyDeleteThis is my solution, enjoy it:
ReplyDeletehttps://mega.nz/#!Fo4F3aLT!kFAEM_LxdAlsAq_50h4Z5_J0HWIXYpM8REcnCyKeRkw
Pedro Miranda
I'm pretty sure x= 12 as I have done and proved this question around 3 months ago,but I have no proof so i don't know what to say.
ReplyDeleteExtend AB to E such that AD = AE
ReplyDeleteConsidering Triangle ADE, < BDE = 60+x (180 - 2(60-2x) -3x) = < DBE
Hence AD = BC = DE = BE = CE (since Triangle BCE is thus equilateral)
So E is the circumcentre of Triangle BCD and
< BCE = <BED / 2
2x = (60-2x)/2 from which
x = 10
Sumith Peiris
Moratuwa
Sri Lanka