Geometry Problem
Click the figure below to see the complete problem 500 about Circle, Diameter, Chord, Perpendicular, Measure.
See also:
Complete Problem 500
Level: High School, SAT Prep, College geometry
Online Geometry theorems, problems, solutions, and related topics.
Geometry Problem
Click the figure below to see the complete problem 500 about Circle, Diameter, Chord, Perpendicular, Measure.
/_CDB=/_CAB from concyclic ABCD but /_CAB=/_BDF from concyclic AFED. Thus, /_CDB=/_BDF or BD bisects /_FDC internally. Likewise, CA bisects /_DCF internally. So FE bisects /_DFC or E is the incentre of Tr. Consider Tr. DFG where FE is the internal bisector. Now FB is perpendicular to FE so FB is the external bisector of /_ DFG. Hence, BG/BF=3/5 or x/(x+8)=3/5 giving us x=12.
ReplyDeleteVihaan, Dubai
Se demuestra facilmente que el punto E es el ortocentro del triangulo formado por AE y las proplongaciones de los lados AD y BC luego el triangulo DFC el punto E es su incentro luego los puntos D, E , G y B son armonicos porlo tanto
ReplyDeletex= 12
wirocha