Sunday, May 18, 2008

Elearn Geometry Problem 7

Geometry Problem, Triangle, Angles

See complete Problem 7 at:
www.gogeometry.com/problem/problem007.htm

Triangle, Cevian, Angles, Congruence. Level: High School, SAT Prep, College geometry

Post your solutions or ideas in the comments.

17 comments:

  1. trazar la ceviana exterior BE (que corta a la prolongacion de AC en E)
    Si el angulo EBC=x
    entonces el angulo BEC=3x...(1)
    Ademas los triangulos ABC y BED son congruentes
    y de (1) se tiene que: el angulo ABC=3x
    Finalmente en el triangulo ABC
    3x+4x+3x=180º
    10x=180º
    x=18º

    atte:tino

    ReplyDelete
  2. http://geometri-problemleri.blogspot.com/2009/10/problem-34-ve-cozumu.html

    ReplyDelete
  3. http://ahmetelmas.files.wordpress.com/2010/05/cozumlu-ornekler.pdf

    ReplyDelete
  4. Given:
    ABC=A+B+C
    ABC=180 A=3x B=x+2x C=4x
    Solution:
    ABC=A+B+C
    180=3x+x+2x+4x
    180=10x
    180/10=10x/10
    18=x

    answer:
    A=3x B=x+2x C=4x
    A=3(18) B=18+2(18) C=4(18)
    A=54 B=18+36 C=72
    B=54

    180=54+54+72
    180=180

    ReplyDelete
  5. Video-solution to the problem by me:

    http://www.youtube.com/watch?v=cMkCjlKlgRk

    Greetings.

    ReplyDelete
  6. The solution is uploaded to the follwing link

    https://docs.google.com/open?id=0B6XXCq92fLJJLWMyd3E5THpTTTJKZHdOaVU2UjRzZw

    ReplyDelete
    Replies
    1. Triangles in the first step can not be congruent by AAS
      there is no criteria of AAS for congruence

      Delete
    2. There is no rule of AAS congruence, side common between angles must be same...................

      Delete
  7. Sea E el punto en la prolongación de A-C tal que CE = AD
    Sea F tal que F-E es paralela a D-B y además EF=DB
    Con esto se arma un rombo DBFE
    La diagonal B-E corta a C-F en un punto G
    Esta diagonal también es bisectriz por lo que ang(GEC)=3α, lo que hace que
    △CGE y △BGF sean isósceles.
    Como BFEC es un paralelogramo recto se deduce que:
    ang(ECB) = ang(FEC)
    Pero esto implica:
    6α=180°-4α
    α=18° Q.E.D.

    ReplyDelete
  8. Construct isoceles Tr. ABE where E is on AC. Then Tr. BDE is isoceles and so DE = BD= AC

    Hence Tr.s ABC & BED are congruent SAS from which it follows that Tr. BDC is isoceles with internal angles adding upto 10x and so x=18

    Sumith Peiris
    Moratuwa
    Sri Lanka

    ReplyDelete
  9. Construct point E such that BA=BE (hence triangle ABE is formed and it is an isosceles triangle, where <BAE=<BEA=3x). Additionally, E lies on AC produced.
    Consider triangle ABC and EBD.
    <ABD=180-9x
    <ABE=180-6x
    Hence <EBC=(180-6x)-2x-(180-9x)
    <EBC=x
    Hence <DBE=3x
    Since <DBE=<DEB=3x, DB=DE
    Since AC=DB (given), AC=DE

    1.BA=BE (from above)
    2.<BAC=<BED=3x (proven)
    3.AC=ED (proven)
    Hence triangle ABC is congruent to EBD (SAS)
    Hence, BD=BC
    <BDC=4x
    In triangle BCD,
    2x+4x+4x=180
    x=18

    ReplyDelete
  10. By the law of sines,
    sin(∠BDC):sin(∠C) = BC:BD = BC:AC = sin(∠A):sin(∠ABC).
    That is,
    sin(180°-6x):sin(4x) = sin(3x):sin(180°-7x),
    thus,
    sin(6x):sin(4x) = sin(3x):sin(7x).
    This implies
    sin(7x)sin(6x) = sin(4x)sin(3x)
    By the product-to-sum identities,
    -(1/2)(cos(13x) - cos(x)) = -(1/2)(cos(7x) - cos(x)),
    which can be reduced to
    cos(13x) - cos(7x) = 0 (since cos(x) = 0 is not valid).
    Then by the sum-to-product identity,
    -2sin(10x)sin(3x) = 0
    which suggests
    sin(10x) = 0 or sin(3x) = 0.
    This means x is either a multiple of 18° or a multiple of 60°.
    Since ∠A = 3x, ∠C = 4x, and ∠ABC = 180°-7x must all be in (0°, 180°), we must have x = 18°.

    ReplyDelete
  11. Construct H projection of B on AC
    Construct E on AC such as DE=AC=BD
    Then C and D are symmetrical with respect to H, thus <BDC=<BCD=4x, finally, in isoceles triangle ∆DBC:
    180°=4x+4x+2x=10x and x=18°

    ReplyDelete
  12. Grab a pen and a piece of paper, and illustrate along.

    Firstly, add point E to the figure and connect it to points B and C such that points A, C and E are collinear and angle BEC = 3x.

    We can calculate that:
    > Angle BCE = 180° - 4x
    > Angle CBE = 180° - (180° - 4x) - 3x = x
    > Angle DBE = 2x + x = 3x = angle BEC
    > Triangle BDE is isosceles because angle BEC = angle DBE
    > Line DE = line BD since triangle BDE is isosceles.
    > Line DE = line BD = line AC
    > Triangle ABE is isosceles since angles BAD and BEC are equal.
    > Line AB = line BE since triangle ABE is isosceles.

    Now we solve the problem:
    > Line AE - line AC = line AE - line DE
    > Line CE = line AD
    > Triangles ABD and BCE are congruent by SAS:
    · Line AB = line BE
    · Angle BAD = angle BEC
    · Line AD = line CE
    > Angle ABD = 180° - 2x - 3x - 4x = 180° - 9x
    > Since triangles ABD and BCE are congruent, angles ABD and CBE are equal.
    > 180° - 9x = x
    > 10x = 180°

    Therefore x = 180°/10 = 18°

    ReplyDelete
  13. Construct point E such that AB=BE
    So,<BAD=<BEC=3x
    Then,<CBE=x and <DBE=2x+x=3x

    In ΔΒCE,
    <DBE=<DEB=3x
    So,BD=DE

    Since AC=BD
    We can say that AC=BD=DE

    Now,
    AE-DE=AE-AC
    AD=CE

    In ΔABD and ΔBCE,
    AB=BE
    AD=CE
    <BAD=<BEC

    We get these two triangles congruent.
    So,<CBE=x=<ABD

    Hence,<ABC=x+2x=3x

    In triangle ABC,
    3x+3x+4x=180
    x=18 and we are done

    Partho Saha
    Bangladesh
    Email: parthosaha.abir@gmail.com

    ReplyDelete