## Monday, May 19, 2008

### Elearn Geometry Problem 38 See complete Problem 38
Right triangle, altitude, incenters, angles. Level: High School, SAT Prep, College geometry

1. ang B = α + α + A/2 + A/2 (see P37)

2α + A = 90°

α = 45 - A/2
------------------------------------------

EBG = CBE - CBG = 45° - A/2 ( BE bisector)

EBG = α
------------------------------------------
EBG = E'FG (perpendicular sides , see P37)

E'FG = 90°
------------------------------------------
F', F" tg points for F, G

=>F'FF" = A/2 - α => ( E'FG = α )
DFG = 45° + A/2 - α ( DF bisector )
DFG = 45° - α + A/2
DFG = A/2 + A/2 ( 45 - α = A/2)

DFG = A

▲FDG = A + 90° + DGF & A + 90° = A + B

DGF = C = 2α
-----------------------------------------

2. bae deok rak(배덕락)October 6, 2010 at 5:35 PM

In Problem 38, we get
(1) ang(EBG)=ang(EBC)-ang(GBC)=45-((90-2α)/2)=α.
(2) Since BPQF is a cyclic quadrilateral,
ang(EFG)=ang(EFQ)=ang(QBG)=ang(EBG)=α,
where P and Q are foots of the altitudes FP
and BQ, respectively.
(3) ang(DGF)=(ang(GDC)+ang(GCD))-ang(FGE)
=(45+α)-(90-α-45)=2α.