Proposed Problem

Click the figure below to see the complete problem 354 about Rhombus, Square, 45 degrees.

See more:

Complete Problem 354

Level: High School, SAT Prep, College geometry

## Saturday, September 12, 2009

### Problem 354. Rhombus, Square, 45 degrees

Labels:
45 degrees,
rhombus,
square,
triangle

Subscribe to:
Post Comments (Atom)

Seja H o ponto de intersecção de CB e DE. O Ang(AGD) = Ang(CGH) = x. Assim, Ang(CDE) = Ang(DEC) = a, pois CE = CD. Ang(CHE) = 90° - a, pois o triângulo CEH é retângulo em C. O ang(DCA) = Ang(ACB) = b, pois a diagonal AC do losango (rombo) é também uma bissetriz do ângulo C. No triângulo CGH, temos que 90° - a = x + b, ou seja, x = 90° - (a + b), pelo teorema do ângulo externo. No triângulo CDG, temos que x = a + b, pelo mesmo teorema. Assim, x = 90° - x e, concluindo, temos que x = 45°(demonstrado).

ReplyDeletejoin B with G and D.

ReplyDelete1) BG = GD (G equal distance to B,D)

2) ang CBD = ang CDB ( BC=DC )

=> angCBG = angCDG (3)

4) ang CFG = ang CDG ( FC = DC )

from 3 and 4

ang CBG = ang CFG

but CF perpendicular to CB, so BG must be perpend to FG

=> BGD = 90

=> AGD = 45 ( CA bisector of C )

But how is cf perp to cb?? Whats your reasoning?

DeleteTriangle ECD is isosceles.

ReplyDeleteLet angleACD = x = angleBCA , angle CED = y = angle CDE.

By considering triangleECD,

angleDEC + angleECD + angleCDE = 180

=> (y) + (90 + x + x) + (y) = 180

=> x + y = 90

=> angleGCD + angleCDG = 90

=> angleAGD = 90

http://s22.postimg.org/8ux75gpb5/pro_354.png

ReplyDeleteConnect AF and FC

Observe that AF//DE

And BF=BA=BC => B is the center of circumcircle of triangle AFC

Inscribed angle FAC= ½ of central angle FBC= angle AGD=45

Construct the square DCMN outside the rhombus; triangles CED and CBM are congruent and have the homologous sides perpendicular, consequently DE_|_BM and they intersect on AC due to symmetry, thus AC is the bisector of <EFM=90.

ReplyDeleteBest regards

Problem 354

ReplyDeleteLet K,L are centers of BCEF , ABCD respectively, then <BKC=90=<BLC so BLCK is cyclic with

<KLC=<KBC=45. But BL=LD, BK=KE then LK//DE .So <AGD=<KLC=45.

APOSTOLIS MANOLOUDIS 4 HIGH SHCOOL OF KORYDALLOS PIRAEUS GREECE

CB = CE = CD, hence C is the circumcenter of triangle BDE.

ReplyDeleteSo < BED = < BCD/2 = < BCG, thus BGCE is concyclic.

Therefore < AGD = < CGE = < CBE = 45.

Sumith Peiris

Moratuwa

Sri Lanka