Geometry Problem

Click the figure below to see the complete problem 545 about Acute Triangle, Squares, Altitudes, Area.

Go to Complete Problem 545

## Thursday, December 2, 2010

Subscribe to:
Post Comments (Atom)

skip to main |
skip to sidebar
## Thursday, December 2, 2010

###
Problem 545: Acute Triangle, Squares, Altitudes, Area

## Link List

Online Geometry theorems, problems, solutions, and related topics.

Geometry Problem

Click the figure below to see the complete problem 545 about Acute Triangle, Squares, Altitudes, Area.

Go to Complete Problem 545

Subscribe to:
Post Comments (Atom)

AB² - AB∙BF = AC∙AE see P 521

ReplyDeleteAC² - AC∙AE = BC∙DC

BC² - BC∙DC = AB∙BF

=>

AB² + AC² + BC² = 2∙( AB∙BF + AC∙AE + BC∙DC )

Apply cosine formula in triangle ABC we have:

ReplyDelete2.b.c.Cos(A)=b^2+c^2-a^2

2.a.c.Cos(B)=a^2+c^2-b^2

2.a.b.Cos(C)=a^2+b^2-c^2

add both side we get 2(b.c.Cos(A)+a.c.Cos(B)+a.b.Cos(C))=a^2+b^2+c^2

This will get to the result

Peter Tran

B, C, E, F are concyclic; AEC, AFB are secants

ReplyDeleteSo AB.AF = AC.AE. Similarly

BC.BD = BA.BF

CA.CE = CB.CD

2(AB.AF + BC.BD + AC.CE)

=(AB.AF + BC.BD + AC.CE)+(AB.AF + BC.BD + AC.CE)

=(AC.AE + BA.BF + CB.CD)+(AB.AF + BC.BD + AC.CE)

=(AC.AE + AC.CE)+(BF.BA+AB.AF)+(CD.CB+BC.BD)

=AC(AE+CE)+ AB(AF+BF)+BC(BD+CD)

=AC.AC + AB.AB + BC.BC

=a^2 + b^2 + c^2

=Sa + Sb + Sc