## Thursday, September 24, 2009

### Problem 359. Cyclic quadrilateral, Angle bisector, Rhombus

Proposed Problem
Click the figure below to see the complete problem 359 about cyclic quadrilateral, angle bisector, rhombus.

See more:
Complete Problem 359
Level: High School, SAT Prep, College geometry

1. Ang(AEN) = ang(DEN) = a, Ang(AFH) = Ang(HFB) = c, ang(ECF) = ang(ECD) = d, ang(EAF) = b, ang(EOF) = x. Assim, teremos que: d = x + a + c , a + c = d – x (1) e x = b + a + c , a + c = x – b (2). De (1) e (2), temos que: x – b = d – x , x = d + b = 90°, pois ABCD é um quadrilátero cíclico. Assim, MN  HG. Como EO perpendicular a HG e EO é bissetriz do ângulo AED, temos que o triângulo EHG é isósceles, concluindo que EO é também mediana do triângulo EHG em relação ao lado HG. Assim, HG = OG. De modo análogo, OM = ON. Como O é ponto médio das diagonais MN e HG, HMGN é um paralelogramo. Como as diagonais HG e MN são perpendiculares, então o paralelogramo é um losango.

2. https://goo.gl/photos/zmDGSDPNEzNTZ8jA7

Define angles a, b, d, e, f , u and point P as per sketch
Locate point Q on AD such that ∠FCD=∠DCQ= u
1. triangles CDF and ABF are similar (case AA) => FD/FC=FB/FA
Since FH bisect angle AFB => GD/GC= FD/FC=FB/FA=HB/HA …. (1)
Similarly we also have MB/MC= ND/NA…. (2)
Triangles CBE and CDQ are similar ( case AA)=> EB/EC=QD/QC=MB/MC=ND/NA…. (3)
Since CD bisect angle QCF => QD/QC=FD/FC=GD/GC= HB/HA…. (4)
Compare (1), (2), (3) and (4) => MB/MC= GD/GC=HB/HA=ND/NA
So MG//BD//HN and MG=HN => quadrilateral HMGN is a parallelogram
2. in the complete quadrilateral EHANFP we will have ∠EPF= a+ 1/2e +1/2f…. (5)
In the complete quadrilateral EMPGFC we will have ∠ECF= ^EPF+ 1/2e +1/2f… (6)
replace (5) to (6) and note that ∠ECF supplement to angle a , we will get ∠EPF= 90
parallelogram HMGN become a rhombus